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Abstract: The field of tissue engineering has made significant advancements with extrusion-
based bioprinting, which uses shear forces to create intricate tissue structures. However,
the success of this method heavily relies on the rheological properties of bioinks. Most
bioinks use shear-thinning. While a few component-based efforts have been reported
to predict the viscosity of bioinks, the impact of shear rate has been vastly ignored. To
address this gap, our research presents predictive models using machine learning (ML)
algorithms, including polynomial fit (PF), decision tree (DT), and random forest (RF), to
estimate bioink viscosity based on component weights and shear rate. We utilized novel
bioinks composed of varying percentages of alginate (2–5.25%), gelatin (2–5.25%), and
TEMPO-Nano fibrillated cellulose (0.5–1%) at shear rates from 0.1 to 100 s−1. Our study
analyzed 169 rheological measurements using 80% training and 20% validation data. The
results, based on the coefficient of determination (R2) and mean absolute error (MAE),
showed that the RF algorithm-based model performed best: [(R2, MAE) RF = (0.99, 0.09),
(R2, MAE) PF = (0.95, 0.28), (R2, MAE) DT = (0.98, 0.13)]. These predictive models serve
as valuable tools for bioink formulation optimization, allowing researchers to determine
effective viscosities without extensive experimental trials to accelerate tissue engineering.

Keywords: bioink viscosity; predictive modeling; extrusion-based bioprinting; machine
learning; rheology; hydrogel composites

1. Introduction
Bioprinting is an evolving technology that utilizes computer-controlled 3D printing

to create scaffolds for tissue engineering. According to the American Society for Testing
and Materials (ASTM) standards [1], the most common bioprinting techniques include
extrusion-based methods (e.g., microextrusion, direct writing) [2,3], jetting-based methods
(e.g., inkjet, laser-assisted) [4–6], and vat polymerization techniques like stereolithography
(SLA) [7,8]. These methods involve the spatial deposition and polymerization of cell-laden
bioinks, enabling scaffold-based bio-manufacturing. Bioprinting typically consists of three
stages: (i) pre-processing, involving material preparation; (ii) processing, through precise
bioink deposition; and (iii) post-processing, which provides temporary support and fosters
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cell-to-tissue growth [9]. Among those techniques [10–12], the extrusion-based one is par-
ticularly versatile and capable of depositing a wide range of substances, including various
types of bioink [13,14]. By adjusting printing parameters, extrusion-based bioprinting can
produce scaffold structures using both acellular biomaterials [15–17] and bioink (living
cells mixed with hydrogel) [2,18,19], ensuring user-defined geometry. Research indicates
that differences in the size and shape of pores in 3D-printed scaffold structures impact cell
behaviors [20]. However, when employing extrusion-based bioprinting, there is often a
significant gap between the intended design and the actual printed scaffold due to the lack
of proper material selection aligning effective printing process properties [21,22]. This poses
challenges in achieving precise shape fidelity, biocompatibility, and mechanical integrity
in the scaffold. Scientists are currently exploring the optimal biomaterials for creating
controlled 3D porous structures through additive manufacturing.

To achieve the defined printability, shape fidelity, and biocompatibility of any proposed
bioinks (biomaterials mixed with living cells), various characterization tests have been
conducted such as rheological [23–26], diffusion and collapse [27,28], microstructural [29],
and cellular activities (viability, proliferation, and differentiation) [30]. Achieving high-
resolution precision and shape fidelity is crucial when fabricating constructs that accurately
replicate the structure and architecture of specific tissues or organs [31]. The bioink used in
this process must perform a series of complex functions, including safeguarding cells during
and after printing, enabling precise control during the printing process, maintaining the
structural integrity and physiological environment of the printed cellular constructs, and
fostering cell growth and functional tissue formation at high densities. These requirements
necessitate a bioink that is both spatially and temporally responsive to stimuli. To meet
these multifaceted demands, it is essential to combine various biomaterials, commonly
known as hybrid hydrogels [32,33], creating a multifunctional bioink that offers desired
biocompatibility, a bioactive microenvironment, shape fidelity, and printability. Such a
comprehensive approach is vital for successful tissue engineering applications.

Therefore, various percentages of each element were used, maintaining the overall
solid content (8%) to explore the effect of each element based on printability, microstructure,
and biocompatibility performances. Alginate, a natural polysaccharide derived from brown
algae, provides excellent printability [14], while gelatin, a denatured form of collagen,
offers cell-friendly environments [15]. The surface of Nano-fibrillated cellulose (NFC), a
derivative of cellulose gel, is altered by oxidation using 2,2,6,6-tetramethylpiperidine-1-oxyl
(TEMPO) [34] to add negatively charged carboxylate ions, which is known as TO-NFC, to
improve uniformity, dispersibility, homogeneity, and printability (TEMPO-NFC). In our
earlier work, it was proposed that novel bioink preparation with alginate, carboxymethyl
cellulose (CMC), and TONFC demonstrates the capability of 3D printing scaffolds, ensuring
defined geometry and promising cell survivability [35,36]. This motivates us to select
these two biomaterials. Moreover, being thermos-sensitive and biologically supportive,
gelatin has been extensively used for bioprinting purposes to improve geometrical and
cellular activities [37–39]. This further reinforced our decision to select gelatin as the
third component of the bioink to harness the combined benefits of all three materials.
To the best of our knowledge, we are the first to introduce a novel bioink formulation
comprising alginate, gelatin, and TO-NFC in this paper. While previous efforts have
explored incorporating various fibers into alginate–gelatin compositions to enhance scaffold
mechanical properties [17,18], our approach leverages the collective advantages of all three
components, aiming to achieve precise scaffold geometry and improved cell viability during
the printing process. Finally, Human Mesenchymal Stem Cells (hMSCs) were mixed to
prepare bioink, and the cell survivability was observed after seven incubation days [40,41].
In the future, this research group aims to achieve differentiation into bone tissue [42].
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We hypothesized that various percentages of hydrogel mixes and shear rates could
result from required rheological properties suitable for the extrusion-based bioprinting
process. Current bioink optimization practices rely on extensive experimentation with
hybrid hydrogel constituents to assess printability, shape fidelity, and biocompatibility. This
approach is time-consuming, resource-intensive, and may yield suboptimal results due to
the complex solution space. Predicting bioink properties is challenging due to polymer
characteristics and chain entanglements [43]. While simple models like Einstein’s linear
prediction [44] can work for dilute and Newtonian fluids, and the Cross model can predict
viscosity at different shear rates for non-Newtonian fluids [45], these models have limita-
tions. They assume homogeneity and continuity, which may not apply to heterogeneous
hybrid hydrogel systems. Additionally, determining rheological factors (n and K) for com-
plex systems can be difficult and require extensive testing. In biomanufacturing, specifically
for 3D bioprinting, predicting viscosity across different compositions is more valuable than
predicting it for a single composition at various shear rates [46,47]. Existing models are
inadequate for this purpose, especially for heterogeneous bioink compositions. Therefore,
developing a viscosity prediction tool for bioinks prepared with hybrid hydrogels is cru-
cial to accelerate the complex process of bioink development in the bio-manufacturing
research community.

Machine learning (ML) algorithms offer exciting opportunities to enhance all three
stages (pre, during, and post) of the bioprinting process, potentially revolutionizing tissue
engineering applications, regenerative medicine, and digital bioprinting [48–51]. Predictive
modeling techniques encompass a range of methods, including linear regression analy-
sis [52], support vector regression algorithms [53], and k-nearest neighbor regression [54]
approaches. These powerful tools have been applied in various aspects of bioprinting
research. ML was used to identify key rheological properties affecting the printing quality
of Type I collagen. Using inductive logic programming (ILP), researchers found that high
storage modulus and low yield stress were dominant factors [49]. Multiple regression
analysis created a simplified linear model to predict printability [49]. Another predictive
model for polymer nanocomposite (PNC) viscosity was developed by combining machine
learning with nonequilibrium molecular dynamics (NEMD) simulations. This computa-
tional framework calculated viscosity under various conditions (shear rates, nanoparticle
loadings, and temperatures) using NEMD [55].

Very few of the reported articles considered the constituents’ weights and shear rate
simultaneously as a function of predicting viscosity. Moreover, a comparison of viscosity
prediction performances of various ML algorithms can help choose the effective one. In this
paper, a machine learning framework has been utilized to predict the viscosity of bioink
prepared with hybrid hydrogels, aiming to enhance extrusion-based bioprinting techniques.
The proposed approach incorporates a series of machine learning algorithms such as poly-
nomial fit, decision tree, and random forest algorithms to determine the viscosity relating
to the bioink constituents’ weights and the shear rates. Polynomial fit, decision tree, and
random forest were selected because they provide robust and effective predictive modeling
capabilities for bioink viscosity [56–58]. Table 1 summarizes the features, advantages,
and challenges of three ML algorithms used in this article along with a description using
the results we observed. These algorithms allow for the simultaneous consideration of
key factors, such as bioink formulation and shear rate, which are critical for enhancing
extrusion-based bioprinting techniques. By comparing the predictive performance of mul-
tiple algorithms, we aim to identify the most accurate and efficient method for viscosity
prediction, ultimately improving printability and advancing bioprinting applications.
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Table 1. Comparative analysis of machine learning models.

Model
Criteria Polynomial Fit Decision Tree Random Forest

Features

Use a straightforward polynomial
math equation

Use the recursive binary
splitting algorithm

Use the bootstrap
resampling algorithm

Considers the higher-order terms and
interdependencies of variables

Capture the non-linear relationships
of variables

Utilize an ensemble approach to
improve model performance

Advantages

Comparative lower but acceptable
model performance with R2 0.95,
MAE 0.28

Comparative mid-model performance
with R2 0.988, MAE 0.13

Comparatively highest model
performance with R2 0.99,
MAE 0.088

Results in a simpler output vs.
predictor model equation

Highly visual with simple decision
rule-based outcome

A highly accurate model with
lower biases

Challenges

Physical interpretation of higher-order
terms may not be feasible

Higher variance and biases on the
predicted model

Model interpretability and
visuals are compromised

Lower extrapolatory properties make
poor model performance with
newer dataset

Highly sensitive and non-robust model
especially when lacking the non-linear
relationship among variables

Comparatively, it requires more
resources and slower processing
of data

2. Results and Discussion
2.1. Rheological Properties of the Hybrid Hydrogels
2.1.1. Flow Behavior of Various Hydrogels

Under a constant total solid content of 8% and fixed TO-NFC levels of 0.5% and 1%, all
formulations with varying alginate and gelatin concentrations demonstrated shear-thinning
behavior, as viscosity decreased with increasing shear rate (Figure 1a). While A5G2T1 showed
the highest viscosities, A2G5T1 showed the least. A2.25G5.25T0.5 exhibited the lowest viscosity,
while A5.25G2.25T0.5 demonstrated the highest. At a fixed TO-NFC concentration (0.5% or
1.0%), alginate content primarily influenced the shear rate. Figure 1a,b clearly illustrates that
increasing gelatin concentration reduces viscosity across all compositions as the shear rate in-
creases. Notably, A2G5T1 experienced a significant drop in viscosity, surpassing A4.25G3.25T0.5

at 2.24 s−1 shear rate and closely approaching A2.25G5.25T0.5 at 100 s−1 shear rate. Furthermore,
comparing T1 and T0.5 compositions revealed that T1 formulations consistently exhibited
higher viscosities and shear stress than their T0.5 counterparts.

Figure 1c,d represents the change in shear stress relating to the shear rate, where the
increasing trend proves the shear thinning behavior of those compositions. In the following
section, the rheological factors such as η∞, η0, t, m, n, and K were determined by fitting the
viscosity versus shear rate data to the Cross model and shear stress versus shear rate to the
Herschel–Bulkley model.

2.1.2. Determination of Rheological Factors Fitting to Cross and Herschel Models

The rheological factors including η∞, η0, t, m, n, and K were obtained by fitting the
viscosity–shear rate data as shown in Table 2. To demonstrate the fitting of experimental
data to the Cross and Herschel–Bulkley model, a total of four compositions such as A5G2T1,
A2G5T1, A4.25G3.25T0.5, and A2.25G5.25T0.5 were considered as shown in Figure 2. The graphs
demonstrate that the experimental data for viscosity and shear stress exhibited a strong
statistical fit to the Cross and Herschel–Bulkley model, with an adjusted R2 value exceeding
0.90 for all compositions. The viscosity versus shear rate data showed an even better fit for
both compositions prepared with 0.5% and 1.0% TO-NFC with an adjusted R2 value close
to 0.99. Table 1 clearly shows that the zero-shear viscosity, zero-shear stress, K, t, and m
mostly changed with respect to the concentration of alginate.
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Figure 1. Viscosity of various percentages of alginate and gelatin infilled with: (a) 1% TO-NFC
and (b) 0.5% TO-NFC; shear stress of various percentages of alginate and gelatin infilled with:
(c) 1% TO-NFC and (d) 0.5% TO-NFC.

Table 2. Fitting Cross and Herschel model for various compositions of various percentages of alginate
and gelatin infilled with T1 and T0.5. Each raw datum was used from Figure 1 and fitted accordingly
as shown in Figure 2 to determine the rheological factors.

Cross model Herschel model
η∞(mPa·s) η0(mPa·s) t (s) m Adj−R2 τ0 (Pa) K (mPa·sn) n Adj−R2

A5G2T1 6191 4,182,705 8.05 0.83 0.99 255.89 582.6 0.22 0.94
A4G3T1 6908 3,476,364 10.41 0.76 0.99 200.51 570.86 0.27 0.95
A3G4T1 1422 2,306,424 17.52 0.71 0.99 70.04 298.76 0.28 0.97
A2G5T1 966 1,956,326 27.9 0.63 0.99 51.62 253.21 0.18 0.98

A5.25G2.25T0.5 9157 2,497,101 7.06 0.75 0.99 159.78 442.08 0.26 0.95
A4.25G3.25T0.5 2784 606,959 3.15 0.67 0.99 69.54 239.52 0.35 0.96
A3.25G4.25T0.5 1298 693,471 5.21 0.66 0.99 77.81 228.12 0.32 0.94
A2.25G5.25T0.5 1460 939,531 12.79 0.68 0.99 64.68 171.27 0.26 0.94



Gels 2025, 11, 45 6 of 26Gels 2025, 11, x FOR PEER REVIEW 6 of 27 
 

 

 

Figure 2. Fitting Cross model to determine 𝑛∞, 𝑛0, t, and m for (a) A5G2T1 and (b) A2.25G5.25T0.5; fit-

ting Herschel model to determine 𝜏0, K, and n for (c) A2G5T1 and (d) A2.25G5.25T0.5. 

Table 2. Fitting Cross and Herschel model for various compositions of various percentages of algi-

nate and gelatin infilled with T1 and T0.5. Each raw datum was used from Figure 1 and fitted accord-

ingly as shown in Figure 2 to determine the rheological factors. 

 

Cross model Herschel model 

 

𝜂∞(mPa·s) 𝜂0(mPa·s) 𝑡 (𝑠) 𝑚 𝐴𝑑𝑗−𝑅2 𝜏0 (Pa) 𝐾 (mPa·s
n
) 𝑛 𝐴𝑑𝑗−𝑅2 

A5G2T1 6191 4,182,705 8.05 0.83 0.99 255.89 582.6 0.22 0.94 

A4G3T1 6908 3,476,364 10.41 0.76 0.99 200.51 570.86 0.27 0.95 

A3G4T1 1422 2,306,424 17.52 0.71 0.99 70.04 298.76 0.28 0.97 

A2G5T1 966 1,956,326 27.9 0.63 0.99 51.62 253.21 0.18 0.98 

0.0 5.0×101 1.0×102

0

1×106

2×106

V
is

co
si

ty
 (

m
P

a.
s)

Shear strain (s-1)

 Cross model

 A5G2T1

0.0 5.0×101 1.0×102

0.0

2.0×105

4.0×105

V
si

co
si

ty
 (

m
P

a.
s)

Shear strain (s-1)

 Cross model

 A2.25G5.25T0.5

6191(mPa.s)

4182705(mPa.s)

8.05

0.83

0.99Adj-R2

1460(mPa.s)

939531(mPa.s)

12.79

0.68

0.99Adj-R2

(a) (b)

0.0 5.0×101 1.0×102

2.0×102

4.0×102

S
h
ea

r 
st

re
ss

 (
P

a)

Strain rate (s-1)

 Herschel Model

 A2G5T1

0.0 5.0×101 1.0×102

2.0×102

4.0×102

6.0×102

S
h

ea
r 

st
re

ss
 (

P
a)

Strain rate (s-1)

 Herschel model

 A2.25G5.25T0.5

(Pa) 51.62

253.21

0.18

Adj-R2 0.98

(Pa) 64.68

171.27

0.26

Adj-R2 0.94

(c) (d)

Figure 2. Fitting Cross model to determine n∞, n0, t, and m for (a) A5G2T1 and (b) A2.25G5.25T0.5;
fitting Herschel model to determine τ0, K, and n for (c) A2G5T1 and (d) A2.25G5.25T0.5.

2.1.3. Three-Point Interval Thixotropic Test (3iTT)

A thixotropy test with three different intervals such as at-rest, shear, and recovery was
performed on all compositions to assess the recovery rate. These data are crucial prior to
conducting the printing process, as they directly impact the accuracy of filament shape. The
first interval represents the resting state of the sample, the second simulates the hydrogel’s
structural breakdown under high shear during extrusion, and the third reflects the recovery
rate, indicating the ability to restore its structure post-extrusion, as shown in Figure 3. In
the first interval, a shear rate of 1.0 s−1 was applied for 60 s, followed by an increase to
100 s−1 for 5 s in the second interval. As shown in Figure 3c, the recovery rates of all eight
compositions were evaluated at 2, 20, 40, and 60 s, revealing a consistent upward trend.
Most compositions, except A2G5T1, achieved recovery rates exceeding 80% within 20 s
after extrusion. This indicates that the deposited filaments are likely to retain their shape
and geometric accuracy.

2.1.4. Loss and Storage Modulus

The amplitude sweep test, conducted at a constant frequency of 1 Hz in this study,
is employed to delineate the linear viscoelastic region (LVR) of the material prior to sub-
sequent frequency sweep analysis. During this test, the deformation amplitude or shear
stress amplitude is systematically varied while maintaining a constant frequency. The
resultant complex modulus (G* = G′ + iG′′) comprises the storage modulus (G′, represent-
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ing solid-like behavior) and loss modulus (G′′, representing liquid-like behavior). At low
shear strain levels, all compositions exhibited a predominance of solid-like behavior over
liquid-like, which persisted until a critical point of intersection, known as the gel point. The
LVR establishes the range within which testing can be performed without compromising
the structural integrity of the sample, thereby preserving its deposit characteristics without
inducing permanent deformation.
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infilled with: (a) 1% TO-NFC, (b) 0.5% TO-NFC, and (c) recovery rate of various compositions after 1,
20, 40, and 60 s of release from the nozzle tip.

Figure 4 represents the strain rate at the LVR, along with the corresponding G′ and G′′

values, as identified. All compositions demonstrated a ‘gel structure’, evidenced by G′ > G′′

within the LVR. Beyond the intersection point, termed the flow point, liquid-like behavior
began to dominate, inducing material flow. This flow stress value provides insight into
the relationship between extrusion pressure and material flow, with the effective pressure
required to exceed this LVR strain rate for successful nozzle extrusion. Notably, with higher
TO-NFC and gelatin percentages, both G′ and G′′ showed higher values.
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Figure 4. Amplitude test: loss (G′′) and storage modulus (G′) of various percentages of alginate and
gelatin infilled with: (a) 1% TO-NFC and (b) 0.5% TO-NFC.

2.2. Prediction of Viscosity as a Function of Weight of Constituents and Shear Rate
2.2.1. Polynomial Fit

The polynomial fit model has been used to predict viscosity as a function of the con-
stituents’ weights (A for alginate, G for gelatin, T for TO-NFC), and shear rate (

.
γ) is a

fourth-degree polynomial regression. This model achieved a high coefficient of determina-
tion (R2 value) of 0.95, indicating that it explains 95% of the variability in the viscosity data.
The mean absolute error (MAE) of 0.28 suggests a reasonably good fit, with predictions
deviating from actual values by an average of 0.28 units. All coefficients for 4th order
polynomial predictive model are shown in Table S1. The model’s performance is shown
in Figure 5. Figure 5a shows the true vs. predicted viscosity values, demonstrating the
overall accuracy of the model. The next four scattered graphs (Figure 5b–e) display the true
vs. predicted viscosity with respect to each parameter (

.
γ, A, G, and T). These graphs help

to visualize how well the model predicts viscosity for different levels of each constituent
and shear rate. The final three graphs (Figure 5f–h) are surface plots showing the viscosity
distribution with respect to SR and each of the constituents (A, G, and T). These 3D visu-
alizations allow for a more comprehensive understanding of how viscosity changes with
varying levels of shear rate and each constituent. The surface plots reveal that alginate (A)
has a higher impact on viscosity with respect to shear rate compared to gelatin (G) and
TO-NFC (T). This is evident from the steeper gradients and more pronounced curvature in
the surface plot for alginate compared to those for gelatin and TO-NFC. This fourth-degree
polynomial model provides a comprehensive tool for predicting bioink viscosity based
on composition and shear rate, with high accuracy as indicated by the R2 value. The
visualizations offer insights into the complex relationships between the constituents, shear
rate, and resulting viscosity, which can be valuable for optimizing bioink formulations in
3D bioprinting applications.

2.2.2. Decision Tree

The decision tree model is used to predict viscosity as a function of the constituents’
weights (A for alginate, G for gelatin, T for TO-NFC), and shear rate (

.
γ) is a hierarchical,

tree-like structure that makes decision rules based on input features to predict the output.
This model achieved a very high coefficient of determination (R2 value) of 0.988, indicating
that it explains 98.8% of the variability in the viscosity data. The mean absolute error (MAE)
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of 0.13 suggests a good fit, with predictions deviating from actual values by an average of
0.13 units. The model’s performance and characteristics are shown in Figure 6. The first
scattered graph shows the true vs. predicted viscosity values, demonstrating the overall
high accuracy of the model across all data points. The close alignment of points to the
diagonal line indicates strong predictive performance. Figure 6b–d graphs are surface plots
showing the viscosity distribution with respect to

.
γ and each of the constituents (A, G,

and T). These 3D visualizations allow for a comprehensive understanding of how viscosity
changes with varying levels of shear rate and each constituent, helping to identify any non-
linear relationships or interactions between variables. Figure 6e illustrates determining the
optimal tree depth. It shows the relationship between the maximum depth of the tree and
the mean cross-validated R2 value. The optimal depth was found to be 9, balancing model
complexity with predictive performance and avoiding overfitting. Figure 6f–h presents
sample rules extracted from the original set of decision rules (detailed in Table S2 of the
supplementary information). These rules provide insight into the decision-making process
of the tree, showing how the model splits the data based on different feature thresholds
to make predictions. The decision tree model’s high R2 value and relatively low MAE
indicate its strong performance in predicting bioink viscosity based on composition and
shear rate. The model captures complex relationships between the input variables and
viscosity, providing an interpretable tool for bioink formulation and optimization.
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Figure 5. (a) Scatter plot of predicted vs. true viscosity in Ln scale; scatter plot of predicted vs. true
viscosity with respect to (b) shear rate, (c) weight of A, (d) weight of G, (e) weight of T; viscosity
distribution with the change of shear rate and (f) weight of A, (g) weight of G, (h) weight of T.

2.2.3. Random Forest

The random forest model was used to predict viscosity as a function of the constituents’
weights (A for alginate, G for gelatin, T for TO-NFC) and shear rate (

.
γ) is an ensemble

learning method that combines multiple decision trees to make predictions. This model
achieved an exceptionally high coefficient of determination (R2 value) of 0.99, indicating
that it explains 99% of the variability in the viscosity data. The MAE of 0.088 suggests a very
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good fit, with predictions deviating from actual values by an average of only 0.088 units.
The model’s performance is shown in Figure 7. Figure 7a shows the true vs. predicted
viscosity values, demonstrating the overall high accuracy of the model across all data points.
The close alignment of points to the diagonal line indicates strong predictive performance.
Graphs shown in Figure 7b–d are surface plots showing the viscosity distribution with
respect to

.
γ and each of the constituents (A, G, and T). These 3D visualizations allow for

a comprehensive understanding of how viscosity changes with varying levels of shear
rate and each constituent. The surface plots reveal that gelatin (G) has a higher impact
on viscosity with respect to shear rate compared to alginate (A) and TO-NFC (T). This is
evident from the steeper gradients and more pronounced curvature in the surface plot for
gelatin compared to those for alginate and TO-NFC. This insight suggests that adjusting
the gelatin content could have a more significant effect on the bioink’s viscosity response to
shear rate than modifying the other constituents.

 
Figure 6. (a) Scatter plot of predicted vs. true viscosity in Ln scale; viscosity distribution with the
change of shear rate and (b) weight of A, (c) weight of G, (d) weight of T; (e) optimum number
of trees, (f–h) some sample rules extracted from the original set of rules shown in Table S2 of
supplementary information.

Figure 7e is an important plot, which ranks the features (
.
γ, A, G, T) based on their

influence on the model’s predictions. This plot demonstrates that shear rate (SR) has
the highest importance in controlling the viscosity, followed by the constituent weights.
This finding highlights the critical role of shear rate in determining the bioink’s viscosity,
which is crucial information for optimizing the bioprinting process. The random forest
model’s high R2 value and low MAE indicates its superior performance in predicting
bioink viscosity based on composition and shear rate. The model captures complex, non-
linear relationships between the input variables and viscosity, providing a powerful bioink
formulation and optimization tool. The RF model offers valuable insights into the relative
influence of each factor, which can further guide researchers in focusing their efforts on the
most impactful parameters when designing bioinks for user-specific applications.
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2.2.4. Optimization

Optimization was performed using differential evolution, a global optimization
algorithm capable of handling non-linear and complex problems effectively. The pa-
rameter space was constrained to observed ranges in the dataset to ensure physi-
cally meaningful solutions. Two optimization scenarios were explored. Firstly, with-
out additional shear rate constraints, the optimization yielded the following results:
(

.
γ, A, G, T) = (0.68, 2.81, 4.93, 0.63), and the predicted Ln (viscosity) was 12.32, which

is equivalent to 224,134 mPa·s. These results fall within the target viscosity range, demon-
strating the efficacy of the optimization approach in identifying parameter sets that meet
the desired structural integrity criteria.

Finally, to investigate practical scenarios requiring a higher shear rate, a constraint
of

.
γ > 50 was added. Because, in the real world, 3D bioprinting processes’ shear rates

at the nozzle tip often exceed 50 s−1 due to the high extrusion pressures required to
maintain a consistent flow of bioinks [59,60], this adjustment ensures the optimized pa-
rameters are reflective of realistic printing conditions, where shear-thinning behavior and
flow dynamics are critical to structural integrity. The resulting optimal parameters were
(

.
γ, A, G, T) = (58.03, 5.10, 2.68, 0.93), and predicted Ln(viscosity) was 9.92, which is equiv-

alent to 20,333 mPa·s. The results indicate that while
.
γ > 50 the constraint was satisfied,

the predicted viscosity did not fall within the desired range of 11.52–13.12. This suggests
that additional adjustments to input ranges or model constraints may be needed to achieve
practical results under high-shear conditions.

2.3. Microstructure of Hybrid Hydrogels
2.3.1. Scanning Electron Microscopy (SEM)

The morphological microstructure was conducted using SEM. Imaging was performed
on the surface and cross-sections of all four dried compositions such as A2.25G5.25T0.5,
A2G5T0.5, A5.25G2.25T0.5, and A5G2T1 to analyze their microstructure morphologically, as
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shown in Figure 8a–j. A smooth cell structure and homogeneous distribution of alginate,
gelatin, and TO-NFC were observed. This homogeneous distribution has resulted from
the strong physical interaction between alginate, gelatin, and TO-NFC. Where most of
the surface was smooth, the cross-sections showed different textures. With increasing
the solid load of gelatin, higher roughness was observed. A work was reported recently
where the surface and cross-section of alginate–gelatin compositions were imaged. The
authors showed that, while the resulting surface was smooth, the freeze-dried pore size
was bigger for the compositions with more gelatin [38]. We analyzed the microstructure
with and without freeze-drying. Even though the first set of samples shown in Figure 8a–h
were not freeze-dried, they showed similar patterns: smooth surface and rough cross-
section with increasing the solid load of gelatin. To analyze the impact of gelatin compared
to alginate, two samples with the highest and lowest amount of gelatin such as A2.25

G2.25T0.5 and A5G2T1 were chosen for freeze-dried SEM analysis. Samples were freeze-
dried to remove water while preserving structural integrity and porosity, thus enabling
imaging via SEM. This is crucial to understand as the resulting morphology determines
the mechanical properties of the scaffold and the efficiency of cell infiltration and nutrient
transport [61,62]. This process also ensures minimal shrinkage and deformation, making
it ideal for tissue engineering applications. Figure 8i,j represents a similar pattern as
reported in [38]. In another work, it was reported that, with a rough surface of alginate and
gelatine composition, encapsulated stem cells can have better anchoring sites to spread and
connect [63]. Therefore, systematic control of alginate and gelatin can help improve the cell
viability of the prepared bioink after printing them.
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Figure 8. SEM images: (a,b) A2.25G5.25T0.5 surface and cross-section, respectively; (c,d) A2G5T1

surface and cross-section, respectively; (e,f) A5.25G2.25T0.5 surface and cross-section, respectively; and
(g,h) A5G2T1 surface and cross-section, respectively; cross sections of freeze-dried (i) A5G2T1 and
(j) A2.25G5.25T0.5. Scale for all surfaces and cross-sections are 200 µm and 20 µm, respectively.

2.3.2. Fourier Transformation Infrared (FTIR)

FTIR spectra were collected on A5.25G2.25T0.5, A5G2T1, A2.25G5.25T0.5, and A2G5T1.
The analysis shown in Figure 9 provides insight into the chemical structure of these formu-
lations. Immediately, the lack of an aldehyde peak at 1738 cm−1 indicates that crosslinking
has not occurred between alginate and gelatin for these formulations [39], as expected.
Broad peaks from 3000 to 3500 cm−1 are characteristic of both O-H and N-H stretching [64]
in alginate and gelatin, respectively. Peaks centered at 2900 cm−1 can be attributed to
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elemental functional groups found in lignocellulosic fibers [65], primarily C-H and -CH2-
groups [66], with minor contributions from NH groups [67]. Moreover, peaks boxed at 2900
and 1449 cm−1 are attributed to the hydrocarbon content of both alginate and gelatin [66,68].
The shift in the position of Amide I bands (1650 cm−1) shown in high gelatin content formu-
lations (A2G5T1, A2.25G5.25T0.5) is associated with backbone conformation and hydrogen
bonding pattern [64]. The asymmetric COO− stretching vibration (1600cm−1) of A2G5T1,
A5G2T1, and A5.25G2.25T0.5 formulations are associated with polysaccharide content [66].
Interestingly, A2.25G5.25T0.5 does not exhibit a peak in this location and may indicate that
this functional group exhibits a different interaction between components as compared
to the other samples, though more work is required to elucidate these differences. High
alginate content formulations (A5G2T1, A5.25G2.25T0.5) do not exhibit the same Amide II
(1510–1580 cm−1) band [64] as that of low alginate content (A2G5T1, A2.25G5.25T0.5). This is
likely due to the relative increase in NH and CN groups of gelatin [66].
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2.4. 3D Bioprinting

To assess the printability, a set of four compositions such as A2G5T1, A2.25G5.25T0.5,
A5G2T1, and A5.25G2.25T0.5 were extruded through a 0.41mm dispensing nozzle using
140 kPa air pressure, 5 mm/s print speed, and 0.15 mm Z-height. Notably, filaments with
a lower ratio of (Gelatin Weight)/(Alginate × TONFC Weight) demonstrated better size
and shape characteristics. The (Gelatin Weight)/(Alginate × TONFC Weight) ratios for
A2G5T1, A2.25G5.25T0.5, A5G2T1, and A5.25G2.25T0.5 were 2.5, 4.66, 0.4, and 0.85, respectively.
A5G2T1 and A2.25G5.25T0.5 showed the lowest and highest values, respectively, which corre-
sponded to their filament sizes as illustrated in Figure 10a. The diffusion rate, calculated
as the percentage change in filament width relative to the nozzle diameter, is depicted
in Figure 10b for all filaments. As anticipated, the pore size and geometry formed by a
bi-layer deposition of A5G2T1 were superior to other compositions, as shown in Figure 10a.
Although A5.25G2.25T0.5 formed a defined pore, its shape became circular due to diffusion.
The other two compositions, A2G5T1 and A2.25G5.25T0.5, barely created pores due to larger
filament size and irregular geometry. Compositions with higher gelatin (temperature sensi-
tive) percentages did not flow smoothly, leading to nozzle clogging and requiring higher
applied pressure for continuous filament extrusion. Therefore, A2G5T1 and A2.25G5.25T0.5

were not extruded with lower applied pressure than 140 kPa to achieve acceptable filament
size and shape. The elevated temperature range from 30 to 55 ◦C resulted in a smooth
filament diameter. However, since cell-laden bioink printed at temperatures above 37 ◦C
can compromise cell viability, we excluded bioink with higher gelation ratio as a candidate
for encapsulating cells. Since A5G2T1 showed a better chance to create filament with better
size and shape, we used this material composition to fabricate a scaffold having a free-form
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shape with 15 layers and 5% infill as shown in Figure 10b,c. The scaffold maintained its
geometry and build height.
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Figure 10. (a) Filaments and bilayer fabricated using compositions mentioned, (b,c) regular and
freeform constructs fabricated with A5G2T1. (d) Diffusion rate of the filament with respect to the
0.41 mm nozzle.

2.5. Biocompatibility

hMSCs were mixed with pure gelatin, pure TONFC, and mixes of TONFC and gelatin.
Mixes of constituents were incubated, and imaged at days 1, 4, and 7, respectively. It
was observed that the number of cells increased with time. Figure 11a shows only the
cell viability data for 7 days. Finally, A5G2T1 composition was also mixed with hMSCs,
incubated, and imaged at days 1, 4, and 7, respectively. Figure 11b shows that cells
expressed their morphology with the presence of A5G2T1 by anchoring and spreading on
the petri dish surface, meaning that the composition is biocompatible. It is also observed
that the number of cells increased with the increase of the incubation time from day 1 to
day 7. This is another indication that cells may grow with the presence of A5G2T1. In the
future, we plan to 3D bioprint scaffold with this bioink and test cell viability, proliferation,
and migration to targeted tissue.

2.6. Discussion

The 3D bioprinting community often recommends increasing solid content to improve
the shape fidelity of bioprinted scaffolds, though this can hinder the cell viability [69–71].
Understanding how specific constituents and shear rates influence viscosity can aid in
tailoring bioinks to achieve the desired balance between shape fidelity and cell viability.
This insight allows the preparation of hybrid hydrogels with varying solid contents that
maintain comparable viscosities [25,72]. Conversely, different compositions with the same
solid content can produce significantly different viscosities. Given the shear-thinning
behavior of hydrogels commonly used in 3D bioprinting, achieving the necessary viscosity
for smooth extrusion can be controlled by adjusting the shear rate, which depends on
factors such as applied pressure and nozzle diameter. As a result, similar viscosities
can be obtained over a wide range of shear rates by optimizing material composition
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and printing parameters. This paper represents a framework that can be followed to
develop any potential hybrid hydrogels for the extrusion-based bioprinting process. The
predictive model of viscosity in terms of constituents’ weight and shear rate can reduce
the exhaustive experiments and assist in finding an effective combination of materials
and process parameters to fabricate constructs with defined architecture and ensure better
cellular activities.
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Figure 11. Biocompatibility tests: 2D hMSC cell culture with 7 incubation days and with the pres-
ence of (a) pure gelatin, TONFC, and a mix of gelatine and TONFC; (b) A5G2T1 at incubation
days 1, 3, and 7.

In this study, three different ML algorithms were employed to predict the viscosity of
a series of novel hybrid hydrogels composed of alginate, gelatin, TO-NFC, and considering
shear rate: a polynomial fit model, a decision tree model, and a random forest model. Each
model’s performance was evaluated using the coefficient of determination (R2) and mean
absolute error (MAE). The comparison of R2 value and MAE is shown in Table 1. The
polynomial fit model achieved an R2 value of 0.95 and an MAE of 0.28, indicating good
overall performance but with room for improvement. The decision tree model showed
enhanced predictive capability with an R2 value of 0.988 and an MAE of 0.13, demonstrating
better accuracy and lower error compared to the polynomial fit. However, the random
forest model emerged as the top performer, boasting the highest R2 value of 0.99 and the
lowest MAE of 0.09. Comparison graphs were presented to visualize the performance
of each model. These included scatter plots of predicted versus actual viscosity values
(Figures 5a, 6a and 7a), which clearly illustrated the superior fit of the random forest model,
with data points clustering more tightly around the ideal prediction line. Surface plots for
each model demonstrated how they captured the relationships between viscosity, shear
rate, and individual hydrogel components, with the random forest model showing the
most nuanced and accurate representations.

The results of this study align with previous research demonstrating the effectiveness
of Random Forest models in capturing complex, non-linear relationships in rheological
data, outperforming simpler models like polynomial fit regression and decision tree [73].
Similar findings have been reported for predictive frameworks in bioink and polymeric
systems, where random forest consistently achieves superior accuracy and reliability in
viscosity modeling under varying shear rates [74,75].
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Based on these results, we recommend the random forest model as the best choice
for users aiming to reduce overall experimentation in future 3D bioprinting applications.
Its superior R2 value and lowest MAE indicates that it provides the most accurate and
reliable predictions of hydrogel viscosity across various compositions and shear rates.
By employing this model, researchers can more efficiently explore the vast parameter
space of hydrogel compositions, potentially reducing the number of physical experiments
required to optimize bioink formulations. This approach can significantly streamline the
bioink development process, saving time and resources while potentially leading to more
optimized and consistent 3D bioprinting outcomes.

During 3D printing, we observed the direct effect of gelatin as a form of ‘gelatin/
(alginate × TONFC)’ on the filament shape fidelity that can drive users to select the right
ratio of bioink constituents to print defined filament width and consequently the pore
geometry and 3D construct. Reportedly, gelatin has a better effect on cellular activities;
therefore, the predictive model can help fine-tune the viscosity of a bioink to achieve printed
construct with defined architecture and higher cell viability. Microstructural analysis using
SEM supports this claim. Two examples of printed construct indicate the capability to
fabricate large-scale (cm-scale) constructs using one of the hybrid hydrogels, e.g., A5G2T1.
Finally, the growth trend of hMSCs mixing with A5G2T1 in various incubation days shows
a great prospect for these hydrogels to be used as potential bioinks for extrusion-based 3D
bioprinting purposes.

3. Conclusions
This study presents a framework for developing hybrid hydrogels for extrusion-based

bioprinting. Various ML algorithms were compared by performance to predict viscosity
in the context of constituents’ weight and shear rate. After comparing polynomial fit,
decision tree, and random forest models, we found the random forest model to be superior,
with the highest R2 (0.99) and lowest MAE (0.09). This approach significantly reduces
the need for exhaustive experiments in bioink development. The random forest model’s
accuracy in predicting hydrogel viscosity based on constituents’ weight and shear rate
allows researchers to efficiently explore a wide range of parameters, potentially stream-
lining the optimization of bioink formulations. This framework is adaptable to various
hybrid hydrogels and bioprinting applications, enabling the systematic development of
constructs with defined architectures and improved cellular activities. In conclusion, this
study advances the rational design of bioinks for 3D bioprinting, combining experimental
data with machine learning to create a powerful predictive tool. In this study, the ML
models were developed using rheological data generated from 169 rheometer sweeps
across varying shear rates and bioink compositions. For practitioners in the 3D bioprinting
community, this approach demonstrates that with sufficient rheological measurements as
base input, the model can accurately predict viscosities and guide the optimization of bioink
formulations. This ensures accessibility for professionals, such as cellular biologists, who
may not have advanced expertise in ML but seek practical tools for bioprinting applications.
Therefore, this approach has the potential to accelerate innovation in tissue engineering
and regenerative medicine, facilitating the efficient development of complex, functional
tissue constructs.

4. Materials and Methods
4.1. Hybrid Hydrogel Preparation

Dry TEMPO nano-fibrillated cellulose (TO-NFC) [(C6H10O5)x(C6H9O4CO2Na)y] with
a carboxylate content ranging from 0.2 to 2 mmol/g solids was obtained from the Process
Development Center (PDC) at the University of Maine. Medium-viscosity alginate (A)
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(viscosity ≥ 2000 cps in a 2% aqueous solution) and gelatin (G) (gel strength ~300 g
Bloom, 100–200 µg/cm2) were sourced from Sigma–Aldrich (St. Louis, MO, USA). These
were combined with TO-NFC following the protocol outlined in Figure 12. A total of
eight compositions were created, varying the proportions of A, G, and T to evaluate
the influence of each component on the overall composition. To reflect the impact of
each element in the compositions, the followings were chosen: 2, 2.25, 3, 3.25, 4, 4.25, 5,
5.25% alginate; 2, 2.25, 3, 3.25, 4, 4.25, 5, 5.25% gelatin; and 0.5 and 1% TO-NFC. These
were mixed systematically to prepare eight compositions such as A5.25G2.25T0.5, A5G2T1,
A4.25G3.25T0.5, A4G3T1, A3.25G4.25T0.5, A3G4T1, A2.25G5.25T0.5, and A2G5T1, maintaining a
total solid content of 8%. All numerical subscripts represent the solid load of the component
mixed into the water to prepare the material compositions.
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Figure 12. (a–e) An overview of the overall framework that starts with the material preparation
followed by rheological data collection and the use of various ML algorithms to predict viscosity.

4.2. Rheological Properties

Rheological properties such as viscosity, shear stress, shear thinning behavior, linear
viscoelastic range, and recovery rate were assessed using a rotational rheometer (MCR 102,
Anton Paar, Graz, Austria), employing a parallel plate configuration with a flat plate
diameter of 25.0 mm. The distance between the plates was set to 1.0 mm. Usually, the gelatin
used for 3D bioprinting application was processed with a range of 40–70 ◦C [76–78]. We
collected our experiment at 55 ◦C temperature in anticipation of conducting the extrusion
process under similar conditions. To assess rheological properties, various rheological
analyses were executed, such as (i) flow curve analysis to determine shear thinning behavior,
(ii) three-point interval thixotropic test (3iTT) to identify recovery rate, and (iii) amplitude
test to find the gelation points. The process parameters used for rheological tests are listed
in Table 3.
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Table 3. Parameters of rheological tests for the proposed work.

Process Parameters for Rheological Tests

Share rate (s−1) Time (s)/share rate (s−1) Share strain (%)

0.1 to 100 0–60/1, 61–65/100, 66–185/1 0.1 to 100

To assess the shear-thinning factors such as infinite and zero shear viscosity, time
constant, and transition control factors of the studied compositions, the Cross model
(Equation (1)) fitted to the flow curve plotted against the shear strain rate [26].

η = η∞ +
η0 − η∞

1 +
(
t

.
γ
)m (1)

where η∞, η0, t, and m are viscosity at infinite shear, viscosity at zero-shear, time constant,
and transition control factor, respectively.

The Herschel–Bulkley model (Equation (2)) [34,35] was fitted to the shear stress versus
shear rate curves to determine the consistency index and flow index:

τ = τ0 + k
.
γ

n (2)

where τ0, k, and n are yield stress, consistency index, and flow index, respectively. Once
k and n are estimated, the shear stress at different shear strains can be determined using
Equation (2).

4.3. Microstructure and Chemical Bonding
4.3.1. Scanning Electron Microscopy and Freeze Drying

The select samples were freeze-dried in a Labconco 120mL Complete Fast-Freeze
Flask using a Labconco FreezeZone 1L Freeze Dry System (Labconco Corporation,
Kansas City, MO, USA); these materials were frozen for 72 h at −80 ◦C and then dried at

0.024 mBar and −47 ◦C for 24 h prior to imaging. Imaging was focused on the surface and
cross-sections of samples, which were mounted on 0.5-diameter pin-type stubs. Samples
were coated with approximately 15 nm of Au/Pd using an SPI Supplies SPI-MODULE
Sputter Coater. Imaging of the samples was carried out with a TescanMira3field Emission
SEM (Brno, Czech Republic) operating at 10 kV with a Secondary Electron (SE) detector.
Working distance (WD) for imaging ranged between 30 and 35 mm with magnifications of
200×–1900× scale.

4.3.2. Scanning Electron Microscopy and Freeze Drying

A PerkinElmer Frontier FTIR (Waltham, MA, USA) with Attenuated Total Reflectance
(ATR) attachment (Diamond/ZnSeGe crystal) was utilized in the 650–4000cm−1 range,
averaging 4 scans per experiment. Data were collected on unreacted liquid formulations
with UATR 3.0mm Sample Position Plate (Part No. L1202023).

4.4. 3D Printing and Characterization

Utilizing an extrusion-based 3D bioprinter (BioX, CELLINK, Boston, MA, USA), fil-
aments and scaffolds were fabricated. Hybrid hydrogels were prepared as described in
Section 4.1, loaded into a 3.0 mL disposable nozzle, and extruded pneumatically onto a
stationary build platform. The nozzle and bed temperatures of the 3D bioprinter were
adjusted based on the amount of gelatin in the composition and ranged from 30 to 55 ◦C.
However, when bioprinting with cell-laden bioink, the nozzle temperature is expected to be
constrained to 37 ◦C to ensure maximum cell viability. In such cases, we plan to adjust the
printing process parameters as outlined in our earlier publications to ensure the accuracy
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of filament and scaffold geometries [79,80]. The design and vectorized toolpath of a scaf-
fold were created using Rhino 6.0 (https://www.rhino3d.com, accessed on 16 June 2024)
(Robert McNeel and Associates, Seattle, WA, USA), a Visual Basic-based Computer-Aided
Design (CAD) software. Slicer (https://www.slicer.org, V: 1.3.0, accessed on 16 June 2024),
a G-code generator software, was used to create a Bio-X compatible file containing tool-
path coordinates and process parameters. The bioprinting process followed the fashion of
layer-by-layer material deposition. Three filaments were produced for each measurement.
Captured under the CK Olympus bright field microscope (Shinjuku, Tokyo, Japan), images
of the fabricated filaments were taken within 1–2 min of printing, minimizing exposure
time. Filament width was determined using Image J (developed by the National Institute
of Health).

Diffusion Rate and Printability

The filament that has been extruded should display a distinct structure with an even
surface and consistent thickness, enabling the formation of uniform grids and square pores.
However, due to the liquid-like state of the hydrogel, the filament can spread and create a
circular pore. The rate of change of filament width (FW) compared to the nozzle diameter
(ND), e.g., diffusion rate (DR) [11], was determined using the following equation:

DR =
FW
ND

× 100% (3)

The solid-like state of the hydrogel can require higher applied pressure to extrude
material resulting in irregular pore geometry. The circularity (C) of an enclosed area is
defined using the following equation:

C =
4πAa

L2 (4)

where L and Aa are the perimeter and the actual area of the enclosed area, respectively. The
circularity is 1 for a circle, while it is π/4 for a square shape. The printability of hydrogel
(Pr) [81] is defined using the following equation:

Pr =
π

4
1
C

=
L2

16Aa
(5)

A Pr value lower than 1 signifies a circular pore structure, while a value exceeding
1 indicates a non-uniform pore arrangement. The targeted Pr value is 1, indicating a
’square’ configuration.

4.5. Machine Learning Algorithms
4.5.1. Polynomial Fit

To model the complex relationship between viscosity and the constituent weight of
hybrid hydrogels, as well as the shear rate, a polynomial regression approach has been
employed. A set of 169 data was used for this analysis. The viscosity (η) was expressed
as a function of the weight percentages of alginate (A), gelatin (G), TONFC (T), and shear
rate (

.
γ). The governing equation of an nth-order polynomial model for the viscosity can be

expressed as:

η =
n

∑
i=0

n−i

∑
j=0

n−i−j

∑
k=0

n−i−j−k

∑
l=0

βijkl AiGjTk .
γ

l (6)

where βijkl are the coefficients of the polynomial, and the indices i, j, k, and l range from
0 to n, such that i + j + k ≤ n. This equation accounts for all possible combinations of

https://www.rhino3d.com
https://www.slicer.org
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the variables up to the nth power, capturing the intricate dependencies and interactions
among the weight of alginate, gelatin, TONFC, and shear rate with viscosity. In this work,
a fourth-order model is considered and compared it with higher-order models. The Akaike
Information Criterion (AIC) has been used to balance model complexity and goodness of
fit. The polynomial fit was validated by comparing predicted values against experimental
data, with the mean absolute error (MAE) used as a metric for model performance measure.
The robustness of the model was further assessed through cross-validation, a randomly
sampled 80% (135) of the data for training and the rest 20% (34) of the data for testing the
model over 100 iterations. This polynomial regression approach provides a comprehensive
framework for predicting bioink viscosity across a range of compositions and shear rates,
facilitating the optimization of 3D bioprinting parameters.

4.5.2. Decision Tree

In this study, a decision tree-based model has been adopted to predict the viscosity (η)
of hybrid hydrogels based on the weight percentages of alginate (A), gelatin (G), TONFC (T),
and shear rate (

.
γ). Decision trees are powerful tools for regression analysis, capable of

capturing non-linear relationships between variables [82]. The decision tree algorithm
recursively partitions the data into subsets based on the feature that provides the highest
information gain, resulting in a tree structure where each node represents a decision result
based on the input variables and decision rules [83]. The governing equation for the
decision tree model can be represented as a piecewise function, where the viscosity (η) is
predicted based on the decision rule defined at each node:

η = fi
(

A, G, T,
.
γ
)
=


η1 f or 1st decision rule
η2 f or 2nd decision rule
. . . . . . . . . . . . . . . . . . . . .

ηd f or dth decision rule

(7)

Each fi represents a regression function applied to a specific subset of the data, defined
by the decision rule-based at the nodes leading to that subset. To manage the high variance
and overfitting issue, the decision tree structure has been optimized using the pruning
tree strategies. A balanced subtree structure has been obtained so that it minimizes the
test error using cross-validation and cost complexity approach. The case study results
demonstrated that the decision tree model effectively captured the complex interactions
between the components and shear rate, providing accurate predictions of viscosity across
a wide range of compositions and conditions. This approach offers a valuable tool for
optimizing bioinkformulations in 3D bioprinting applications.

4.5.3. Random Forest

In this study, a random forest-based regression model has been utilized to predict the
viscosity of bioinks based on the weight percentages of A, G, T, and (

.
γ). Random forest, an

ensemble learning method, constructs multiple decision trees during model training using
random subset of data and averaging outputs estimation of the individual trees, thereby
enhancing predictive accuracy and robustness. The governing equation for the random
forest model can be represented as:

η =
1
N

N

∑
i=1

Ti
(
A, G, T,

.
γ
)
=


η1 f or average 1st decision rule
η2 f or average 2nd decision rule

. . . . . . . . . . . . . . . . . . . . .
ηd f or average dth decision rule

(8)
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where η is the predicted viscosity, N is the number of trees in the forest, and Ti represents
the prediction from the ith decision subtree. The trees in the random forest grow deep
and are not pruned. Thus, they have high variance in estimation with lower bias. Large
sample averaging reduces the estimate variations at the end. The random forest model was
validated using cross-validation techniques, demonstrating its superior performance in
predicting viscosity compared to traditional regression methods. This model provides a
reliable tool for optimizing bioinkformulations, ensuring precise control over the viscosity
for various 3D bioprinting applications.

4.6. Optimization

Our previous research established that hybrid hydrogels with a viscosity range of
100–500 Pa·s can maintain defined structural integrity [24,35,84]. Based on this finding, we
will optimize the concentrations of alginate, gelatin, TO-NFC, and the shear rate within this
viscosity range using the predictive model results. The optimization was performed using
a global optimization algorithm, differential evolution, which is well-suited for non-linear
and complex problems [85]. Differential evolution iteratively explores the parameter space
to find the optimal solution while handling constraints through the penalty mechanism. To
identify the optimal values of

.
γ, A, G, and T for achieving the target viscosity, we defined

an objective function, f
(

A, G, T,
.
γ
)

that minimizes the deviation of predicted viscosity
(ηpred) from the desired range of 100–500 Pa·s (e.g, logarithmic transformation: 11.52–13.12).
The midpoint ( ηmid) is 12.32. Each parameter was constrained to its observed range in
the dataset (e.g.,

.
γϵ

[ .
γmin,

.
γmax

]
, Aϵ[Amin, Amax], Gϵ[Gmin, Gmax], Tϵ[Tmin, Tmax]) to ensure

physically meaningful solutions. The objective function is defined as:

f
( .
γ, A, G, T

)
=

(
ηpred

( .
γ, A, G, T

)
− ηmid

)2
(9)

where ηpred is the viscosity predicted by the trained random forest model given the param-
eters

.
γ, A, G, T. The objective function focuses on reducing the deviation from this central

value while ensuring that viscosity predictions remain within the acceptable range. To
ensure the optimization adhered to the target range, a penalty function was introduced for
cases where the predicted viscosity fell outside of the 11.52–13.12 range. The penalty was
defined as:

Penalty
( .
γ, A, G, T

)
=


∣∣∣ηpred − 11.52

∣∣∣, i f ηpred < 11.52∣∣∣ηpred − 13.12
∣∣∣, i f ηpred > 13.12

0, otherwise

(10)

The penalty term ensured that the optimization process discouraged solutions with
predicted viscosity values outside the desired range.

F
( .
γ, A, G, T

)
= f

( .
γ, A, G, T

)
+ Penalty

( .
γ, A, G, T

)
(11)

The penalty term ensured that the optimization process discouraged solutions with
predicted viscosity values outside the desired range. If the optimized values are not
practical for real-world 3D bioprinting applications, we can introduce additional con-
straints to ensure the results are more realistic and applicable. One such scenario is
if we want to achieve

.
γ > 50 during printing, the updated range in the dataset will

be
.
γϵ

[
50,

.
γmax

]
, Aϵ[Amin, Amax], Gϵ[Gmin, Gmax], Tϵ[Tmin, Tmax], and the penalty function

will be:
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Penalty
( .
γ, A, G, T

)
=



(
50 − .

γ
)2 i f

.
γ ≤ 50∣∣∣ηpred − 11.52

∣∣∣, i f ηpred < 11.52∣∣∣ηpred − 13.12
∣∣∣, i f ηpred > 13.12

0, otherwise

(12)

We observed in most of our earlier investigations that the effective shear rate during
extrusion showed more than 50 s−1 [24,80]. This scenerio was also supported by other
researchers [86].

4.7. Biocompatibility

Normal Human Adipose-Derived Mesenchymal Stem Cells (hMSCs) (ATCC, Manassas,
Virginia) were cultured and maintained in a low-serum growth medium designed for adipose
and umbilical-derived MSCs. The medium contained 2% FBS, 5 ng/mL rh FGF-basic, 5 ng/mL
rh FGF-acidic, 5 ng/mL rh EGF, 2.4 mM L-Alanyl-L-Glutamine, and 0.5 mL of Penicillin–
Streptomycin–Amphotericin B Solution (ATCC, Manassas, Virginia). Cells were incubated at
37 ◦C with 5% CO2, and the culture medium was refreshed twice a week. Cells at passage 3
were utilized for encapsulation, and bright-field microscopy images were obtained using a
CK Olympus microscope (Shinjuku, Tokyo, Japan).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/gels11010045/s1, Table S1: Coefficients of all variables for 4th order
polynomial predictive model; Table S2: All rules for decision tree-based model.
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